Question 14: Graph each of the following absolute functions: a. y = |x – 4| b. y = |-4-x| c. y = |2x + 5| d. y = -|x|
Solution
a. y = |x – 4| By definition, the given function is, Now (x-4) ≥ 0 ⇒ x ≥ 4. and x-4 < 0 ⇒ x < 4 If x = 4, y = 0. Therefore, the graph will consist of two lines that meet at (4, 0). Giving values to x and finding the corresponding values of y, the following data is obtained.
x
4
5
6
7
y
0
1
2
3
And
x
3
2
1
0
y
1
2
3
4
(b) y = |-4-x|
When we take the absolute value bars off, we get the equation as; Now if -4-x ≥ 0 ⇒ x ≥ -4 If -4-x < 0 ⇒ x < -4. Now giving appropriate values to x in both segments and finding the corresponding value of y and then plotting it,
(c) y = |2x + 5|
Take the absolut bars off, If 2x+5 ≥ 0 ⇒ x ≥-5/2 If 2x+5 < 0, ⇒ x < -5/2 So giving appropriate value to x and finding the corresponding value of y, If x = -2 (>-5/2), y = 2(-2) + 5 = 1 If x = -3 (<-5/2), y = -[2(-3) + 5] = -(-6+5) = +1
d. y = – |x|
By definition the above function is
Hence substituting values for x and finding y If x = 0, y = 0 If x = 1, y = -1 If x = 2, y = -2 If x = 3, y = -3 AND If x = -1, y = -1 If x = -2, y = -2 If x = -3, y = -3 Plotting on the graph
Pingback:Math’s 12, Exercise 1.1, Question 13 … msa
Pingback:Exercise 1.1, Math’s 12